MATH1520 University Mathematics for Applications Spring 2021

Chapter 11: Ordinary Differential Equations

Learning Objectives:
(1) Solve first-order linear differential equations and initial value problems.
(2) Explore analysis with applications to dilution models.

1 Ordinary Differential Equations

Definition 1.1. An ordinary differential equation (ODE) is an equation involving one or
more derivatives of an unknown function y(z) of 1-variable. A differential equation for a
multi-variable function is called a “partial differential equation” (PDE).

The order of an ordinary differential equation is the order of the highest derivative that
it contains.

Example 1.1.

DIFFERENTIAL EQUATION ORDER
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Example 1.2. 1. 4y”)+ ¢Y = 2%Iny/ is a second order ODE.
P

2. fo(2)y" + f1(2)y + fo(x)y = g(x), f2(x) # 0. This is a second order linear ODE in the
function y(z). g(x) is called the inhomogeneous term; the left hand side of the equation
is called the homogeneous part of the this linear ODE; fo(z)y” + f1(2)y' + fo(z)y = 0is
called the associated homogeneous linear ODE of the linear ODE given above. A linear
ODE with inhomogeous term O is called a homogeneous linear ODE.

3. The ODE in 1. is non-linear. The second ODE in Example 1.1 is linear with inhomoge-
neous term e.
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Remark. > " | a;x; =|b) where a;,b are constants (“coefficients”) is said to be a linear
equation in the variables 1, ..., z,. b is called the inhomogeneous term, and the equation is
said to be homogeneous when b = (. For differential equations, functions of x play the roles
of “coefficients” ai, ..., an, b, and y, i = 0,1, ... play the roles of “variables”.

Definition 1.2. A function y = y(z) is a solution of an ordinary differential equation on an
open interval if the equation is satisfied identically on the interval when y and its derivatives
are substituted into the equation.

Remark. The solution might not exist; it might not be unique.

Example 1.3. y(z) = ¢?* is a solution to the ODE y" — 43/ + 4y = 0. y(x) = 4e* is another
solution.

Example 1.4. Find the solution of %y = 4z, or equivalently, y/(x) 74\95

Solution. Integrate both sides: y(z) = / 4x dx = 2x* + C, where C is an arbitrary constant.

Then, y = 222 + C, C € R is called general solution of y/(z) = 4z.

Choose any C, e.g. C = 5, we get a parficular solution y = 22 + 5. |

For a first-order equation, the single arbitrary constant can be determined by specifying
the value of the unknown function y(x) at an arbitrary x-value ¢, say y(xo) = yo. This is
called an initial condition, and the problem of solving a first-order equation subject to an
initial condition is called a first-order initial-value problem.

Example 1.5.
[y(x) =42
ly(5) =20

is an initial value problem.
General solution y = 222 + C should satisfy the initial condition y(5) = 20, i.e.

20=2(5*+C = C=-30.

So, the unique solution to the initial value problem is y = 2x2 — 30.

Solving a general ODE is typically very difficult, and there is no general algorithm for
doing so. We shall discuss only some particularly simple cases.
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2 Separation of Variables

Definition 2.1 (Separable Equation).

is called a separable equation.

For those separable differential equations, we can formally rewrite them in the form
(“separation of variables”-each side involve one single variable)

“h(y) dy = g(x) dz” €8]

Integrate both sides with respect to x and y respectively, we have

[ 1wy = [ gy @

or, equivalently

H(y) =G(z) +C (3)

where H(z), G(z) denote antiderivatives of h(z) and g(x) respectively, and C' denotes
a constant.

Example 2.1. Solve

dy _ 2z
(1) @:27'% (2) {dmy2’
y(0) =1.

Solution. (1) Separating variables and integrating yields

yidy = 2xdx
/y2 dy = /dex
or 1
gyg = .%'2 + C

or, equivalently
y=v/32+C)
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(2) The initial condition y(0) = 1 requires that y = 1 when = = 0. Substituting these values
into our solution yields C' = % (verify). Thus, a solution to the initial-value problem is

y= 322 +1.

[ |
Example 2.2. Solve
dy 3
=(—4
dx y.d
Solution. (1) For y # 0, we can write the differential equation as
1d
yo dx
Separating variables and integrating yields
1
—dy = —4dzdz
Y
1
/ ?dy = / —4xdx
or
! 22° + C
——5 = 2z Z
212
or, equivalently
2 _ 1
Y T ac
(2) Constant function y = 0 also satisfies the differential equation, since
0 = —4z - (0)3
Therefore, the solution is y* = '~ or y = 0.
|

Remark. For y' = g(x)h(y), divide both sides by h(y) = % = g(z)dz.

Do not miss the particular constant solution y = a that makes h(a) = 0.

Example 2.3. Solve 3/ = 32%,
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Solution. (1) For y # 0, it can be written as

d
YW _ 322 dx
Y

d

/y:/Sdea:
Yy

In|y| =23 + Cy
lyl =/ (™, G{eRr
y:iexs-d"vl, Ci eR
y:Cgemé, Co #0

SO

(2) Check: y = 0 is also a solution.

Therefore, the general solution is

y:Ce‘”3, CeR

Example 2.4. Find a curve y = y(z) on the = — y plane that passes through (0, 2) and whose
tangent line at a point (x,y) has slope 223 /3.

Solution. Since the slope of the tangent line is dy/dx, we have

dy/ 223
dz) ([ y?

which is separable and can be written as

yidy = 223dx

SO

1 1
/y2dy = /21:3d:£ or gyg = 5:54 +C

It follows from the initial condition that y = 2 if z = 0./Substituting these values into
the last equation yields C = % (verify), so the equation of the desired curve is

145 14
y—2x+

8
3 3
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3 First-Order Linear Differential Equations

Recall: A 1st order linear ODE has the general form a(z)y’ + b(z)y = ¢(z), where a(z) # 0.
We can always divide the whole equation by a(z) and consider equivalently the equation

b c . .
y' + —y = — wherever a(x) # 0. So we may restrict to equations of the form
a a

— +p(@)y = q(z). 4

(1) If g(x) = 0 (homogeneous case),

d
d*y +p(z)y =0, separable equation!
xr

(2) For general ¢(x), use integrating factors!

Idea: multiply the differential equation by a factor u(x), then

dy

wla) o Hu(@)p(2)y = p(z)e(z)

Hope we can rewrite LHS in the form of di (---), then the differential equation can be
x

written as
— () = p(z)q(z) separable equation!

Check: | p(z) = e/ P4 works!

d dy | du

%(My) =Ho + 1Y (product rule)
d

= uﬁ + pp(z)y (chain rule)

= g (apply equation)

So, py = [ pgdz and

7
y:/uqd;z:
1

Remark. There are infinitely many choices for u(x) = e/ P@)dz (it involves an indefinite
integral). Just pick any one!
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The Method of Integrating Factors

Step 1. Calculate the integrating factor
o= efp(ac)dac.

Since any y will suffice, we can take the constant of integration to be zero in this step.

Step 2. Multiply both sides of (4) by 1 and express the result as
d
7 1Y) = pa().

Step 3. Integrate both sides of the equation obtained in Step 2 and then solve for y. Be sure to
include a constant of integration in this step.

Example 3.1. Solve the differential equation

dy _[ 3z
i A
Solution. We have a first-order linear equation with p(x) = —1 and ¢(z) = 3* .

M — efp(x)dz — ef(_l)dx = e—l"

Next we multiply both sides of the given equation by x to obtain

d
efzﬁ _ €7Iy — 671‘6333
which we can rewrite as p
e T — 2z
*dx[ Y]

So

1
ey = 56236 +C

Finally, solving for y yields the general solution

1
Y= §e3m + Ce”.

Exercise 3.1. Solve y/ + 2zy = 4x.
Ans: y =2+ Ce=".
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Example 3.2. Solve the initial-value problem
dy
=Ly = 1) =2.
v —y=a y()
Solution. By dividing both sides by x, we have

W_Lo_1 @40

dr =«

By the initial condition at x = 1, we restrict domain to = > 0. Then,

_rt _ . 1
Mzefp(m)d:p:e fzdx:@ 1n|:p\:€ Inz _ =

- .

Multiplying both sides of Equation (5) by this integrating factor yields

or

Therefore, on the interval (0, +c0),

1 1
y:/dx:ln$+0
x x

from which it follows that
y =z lnlzl+ Cx.

By y(1) = 2, we have C' = 2 (verify). So the solution of the initial-value problem is

y=zlnz+2z, z=>0.

Exercise 3.2. Solve the initial-value problem

dy
T —Y=1, y(—1)

()

(6)
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4 Modeling with ODE

Example 4.1 (Mixing Problem). At time ¢ = 0, a tank contains 4 1b of salt dissolved in 100
gal of water. Suppose that brine containing 2 1b/gallon of salt is pumped into the tank at a
rate of 5 gal/min. At the same time, that the well-mixed solution is drained from the tank at
the same rate. Find the amount of salt in the tank after 10 minutes.

5 gal/min
100 gal
= (1
5 gal/min
Solution.
Let y(t) = amount of salt (Ib) at time ¢.
y(0) = 41b.

Aim: y(10) = ?

d
Key: How y(t) changes? or, dit/ =7 Ib/min.

We always have

dy .
— = rate in — rate out.
dt

where rate in is the rate at which salt enters the tank and rate out is the rate at which
salt leaves the tank.

By the formula: ’mass = volume x concentration | we have

rate in = (21b/gal ) - (5 gal/min ) = 10 lb/min.

_ (v® . in) = Y9 1b/mi
rate out = (100 lb/gal) (5 gal/min ) = 50 1b/min.

Therefore, we have an initial first order linear ordinary differential equation

—=10—-—=—= o —+—=10
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The integrating factor for the differential equation is

= el (1/20)dt _ ot/20

If we multiply the differential equation through by p, then we obtain

%(et/QOy) — 106t/20

et/20y = /1Oet/20dt = 200¢"%° + C
y(t) = 200 4+ Ce /2.

Substituting ¢t = 0 and y = 4 into y(¢) and solving for C' yields C' = —196, so

y(t) = 200 — 196e /20

At time ¢ = 10, the amount of salt in the tank is

y(10) = 200 — 196192 ~ 81.1 Ib.

Remark. After sufficiently long time, as ¢ — +o0, y(t) — 200 lb.

Example 4.2. Modelling a pandemic: (SIR model)

https://www.youtube.com/watch?feature=share&v=Qrp40ck3WpIl&app=desktop

Note: the number of infected grows exponentially in the initial stages (no intervention).
Coronavirus Cases Live Updates:

https://www.youtube.com/watch?feature=share&v=Qrp40ck3Wpl&app=desktop



